METHOXIDE-CATALYSED REARRANGEMENT OF N- TO O-(DIPHENYLPHOSPHINYL)HYDROXYLAMINE

Martin J.P. Harger

Department of Chemistry, The University, Leicester LE1 7RH

Summary. In methanol $Ph_2P(0)$ NHOH undergoes rapid NaOMe-catalysed rearrangement to $Ph_2P(0)$ ONH, which is subsequently converted into $Ph_2P(0)$ ONA and $Ph_2P(0)$ OMe.

<u>N</u>-Phosphinylhydroxylamines such as <u>1</u> have been prepared only recently,¹ and their chemistry remains largely unexplored. As structural analogues of hydroxamic acids² they might be expected to form stable salts with alkali, but we now report that this is not the case.

Ph ₂ P(O)NHOH	Ph ₂ P(0)0 ⁻	Ph ₂ P(0)OMe	Ph2P(0)ONH2
1	2	3	4

<u>N</u>-(Diphenylphosphinyl)hydroxylamine <u>1</u> dissolves only slowly in aqueous NaOH and ³¹P n.m.r. spectroscopy shows that the solution does not contain the conjugate base of <u>1</u>; rather it consists entirely of the phosphinate anion <u>2</u> resulting from hydrolysis and/or decomposition. In methanol solution <u>1</u> (0.040 M) reacts with NaOMe (1.0 equiv.) over ca. 20 min at 26 °C to give comparable amounts of the phosphinate anion <u>2</u> and ester <u>3</u>. Using ³¹P n.m.r. spectroscopy it can be seen that <u>1</u> (δp 29.6) is completely consumed within 3 min ($t_1 \sim 0.3$ min) but the products <u>2</u> (δp 19.9) and <u>3</u> (δp 34.7) form relatively slowly (Figure).³ The intermediate (δp 38.1) that is dominant in the early stages of the reaction was isolated from a reaction quenched (AcOH) after 1.3 min; on concentrating and cooling, crystals of <u>0</u>-(diphenylphosphinyl)hydroxylamine <u>4</u> (61%) were obtained, identical with the sample previously prepared by direct phosphinylation of H₂NOH.⁴ Separate experiments confirmed that both the rate ($t_1 \sim 3.5$ min at 26 °C) and the products [(2) + (3), ratio ~ 1] of the reaction of <u>4</u> with NaOMe (1 equiv.) in methanol are compatible with it being the only product formed directly from 1.

<u>FIGURE</u> Reaction of <u>1</u> in MeOH with NaOMe (1 equiv.) at 26 $^{\circ}$ C: Composition of the mixture at different times. (Data obtained by ³¹P n.m.r. analysis of samples quenched with AcOH.)

- ▲ Ph₂P(0)NHOH
- Intermediate
- Ph₂P(0)0 + Ph₂P(0)0Me

The rearrangement of $\underline{1}$ to $\underline{4}$ is reminiscent of that which occurs in the acylation of H₂NOH, although there it is the kinetically-preferred <u>O</u>-acylhydroxylamine that isomerises to the more stable <u>N</u>-acyl compound.⁵ Also, whereas H₂NOH is the specific catalyst for the rearrangement of acylhydroxylamines,⁵ it does not promote the interconversion of <u>1</u> and <u>4</u> in methanol (in the absence of alkali). Use of less than 1.0 equiv. of NaOMe shows that it acts catalytically in the rearrangement of <u>1</u> (Table), but because it is consumed in the subsequent breakdown of <u>4</u> some 0.15 equiv. is needed for complete conversion of <u>1</u>.⁶

TABLE Reaction of <u>1</u> in MeOH with different amounts of NaOMe: Composition of the mixture when reaction ceases.

NaOMe (equiv.)	0.05	0.10	0.15	0.20	1.00
Ph ₂ P(0)NHOH (%)	24	8	0	0	0
Ph ₂ P(0)ONH ₂ (%)	67	78	71	62	0
<u>2</u> + <u>3</u> (%)	9	14	29	38	100

Mechanistically the rearrangement of $\underline{1}$ to $\underline{4}$ could be intermolecular with methoxide acting as a nucleophile, but since $\underline{3}$ is not converted into $\underline{4}$ under the conditions of the reaction this seems unlikely. An alternative would involve methoxide as a base; the anion $\underline{5}$ could then rearrange by intramolecular nucleophilic attack with formation of a three-membered cyclic phosphorane intermediate 6. The subsequent breakdown of 4 presumably involves competing attack of

methoxide at phosphorus to give $\underline{3}$ and on the NH₂ group to give $\underline{2}$. If this can be prevented the rearrangement of $\underline{1}$ may prove useful since $\underline{4}$ shows promise as an electrophilic aminating agent.^{7,8}

References and Footnotes

- 1. M.J.P. Harger, J. Chem. Soc., Chem. Commun., 1979, 930.
- H.L. Yale, <u>Chem. Rev.</u>, 1943, <u>33</u>, 209; L. Bauer and O. Exner, <u>Angew. Chem. Int. Edn. Engl.</u>, 1974, 13, 376.
- 3. The ratio 2/3 was >1 in the early stages but tended towards 1 as reaction proceeded.
- 4. M.J.P. Harger, J. Chem. Soc., Perkin Trans. 1, 1981, 3284.
- W.P. Jencks, J. Am. Chem. Soc., 1958, 80, 4581, 4585; T.C. Bruice and L.R. Fedor, J. Am. Chem. Soc., 1964, 86, 739.
- 6. For both <u>1</u> and <u>4</u> the product ratio 2/3 was \sim 1 using 1 equiv. NaOMe but \sim 2 with 0.1-0.2 equiv. and \sim 0.5 with 10 equiv.
- 7. e.g. E.W. Colvin, G.W. Kirby, and A.C. Wilson, Tetrahedron Lett., 1982, 3835.
- Compounds related to <u>4</u> have been postulated as unstable intermediates in the phosphorylation of H₂NOH, e.g. B.J. Jandorf, <u>J. Am. Chem. Soc.</u>, 1956, <u>78</u>, 3686. (Received in UK 16 May 1983)